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Abstract— With rapid developments in wireless sensor 
networks, there is a growing need for transceiver position 
estimation independent of GPS, which may not be available 
in indoor networks.  Our approach is to use range estimates 
from time-of-flight (TOF) measurements, a technique well 
suited to large bandwidth physical links, such as in ultra-
wideband (UWB) systems.  In our UWB systems, pulse 
duration less than 200 psecs can easily be resolved to less 
than a foot.  Assuming an encoded UWB physical layer, we 
first test positioning accuracy using simulations.  We are 
interested in sensitivity to range errors and the required 
number of ranging nodes, and we show that in a high-
precision environment, such as UWB, the optimal number 
of transmitters is four.  Four transmitters with ±20ft. range 
error can locate a receiver to within one or two feet.  We 
then implement these algorithms on an 802.11 wireless 
network and demonstrate the ability to locate a network 
access point to approximately 20 feet.

I. INTRODUCTION

n many sensor network applications, such as 
environmental monitoring of ground water or airborne 

chemicals, firefighters in buildings, or soldiers in caves, 
it is important to know the position of the network nodes.  
Range estimation from TOF data between 
communicating nodes is particularly attractive when 
using short-duration or high-frequency pulses such as 
UWB systems, and to a lesser extent for wireless local 
area network links in the 2.4 and 5 GHz bands.  For 
example, from radar theory, the root mean square (rms) 
range error in meters is given by [6]:

c
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                       (1)
where BW is the bandwidth of the pulse, SNR is the 
signal to noise ratio at the receiver, and c is the speed of 
light, 3x108m/s.  For bandwidths of 10 MHz, 100 MHz, 
and 1 GHz (corresponding approximately for 802.11b, 
802.11a, and UWB systems), the rms range errors are 
3m, 0.3m and 0.03m, respectively, for an assumed SNR 
of 20 dB.  We cannot expect to achieve this accuracy 
here, as we are using standard communication protocols 
and not dedicated radars, so we expect our range errors 
to increase one to two orders of magnitude.  The range 
errors for an 802.11-a link can then be anywhere from 3 

to 30 meters.  We expect the more robust UWB systems 
to perform better than this, the wideband nature of the 
pulses allows us to determine the arrival times in a 
correlation filter more precisely than in narrow band 
systems. For example, in UWB systems developed at 
LLNL, the radio-frequency (RF) pulse duration is only 
about 200 pico-seconds. Hence, the arrival time of the 
pulses can resolved to less than a foot. 

In this work, we first assume a high-precision ranging 
mechanism such as UWB and we simulate position 
estimation for a set of communicating nodes.  We next 
implement the technique on actual 802.11 hardware to 
test the capability in a low-precision environment.  This 
paper is a discussion of our simulation investigation on 
high-precision node positioning from TOF data and our 
low-precision implementation on an 802.11 network.  

For the high-precision simulations, a network consists 
of transmitter and receiver nodes distributed randomly in 
a 100m x 100m area.  Transmitters have known position 
via satellites or some other method, receivers have 
unknown position.  Transmitters determine receiver 
position through time-of-flight ranging and information 
sharing.  By simulating ranging in this scenario, we can 
describe the relationship between ranging accuracy and 
position estimation accuracy, the improvement in 
position estimation with additional transmitting nodes, 
and the benefit of using a “ranged” receiver node as a 
pseudo-transmitter.  Interested readers are referred to our 
references for a more extensive survey of current 
research in this area. 

In the 802.11 implementation we address the need for 
network security where an access point may be providing 
connectivity to unapproved users, transmitting unwanted 
data, or otherwise acting in a non-compliant manner, and 
we seek to locate its position.  Experimental limitations 
require us to address only the inadvertent violator 
scenario.  In a real world application, we could use 
system-level transactions allowing utility in a more 
hostile environment.  Assuming all nodes communicate 
with each other via an access point, and the 802.11 
signals propagate through walls, a range measurement 
between a node and an access point is proportional to 
their distance.  The transaction we choose is the PING.  
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The version distributed by the Microsoft Corp. measures 
time-of-flight in msecs; instead of this, we use a version 
where trip delay is given in µsecs, hrPING distributed by 
cFOS Corp. in Denmark.    

Figure 1. In the MATLAB GUI-based software the user designates a 
network of transmitters and receivers and simulates the network in 
ranging, filtering, data management, and position estimation.

II. SOFTWARE INTERFACE

We developed a MATLAB GUI-based 
communication and simulation package for two goals: to 
simulate virtual networks of transmitters and receivers 
where the user specifies the error associated with the 
ranging transactions, and to act as an interface on a real 
network of transmitters and receivers.  Both goals require 
a ranging mechanism, a data sharing communications 
infrastructure, and position estimation algorithms.  A 
screenshot of the interface is shown in Fig. 1.  The 
software simulates (in the UWB case) or implements (in 
the 802.11 case) actual ranging, maintains the 
communications infrastructure, measurement filtering, 
and information sharing allowing position estimation.  

Using the simulation environment, we quantified the 
relationship between transmitter ranging accuracy and 
receiver position estimation accuracy, the level of 
improvement with additional transmitters, and 
determined if a “located” receiver can act as a “pseudo-
transmitter” to improve the position estimate of other 
receivers.  In the hardware environment we implemented 
the technique on a wireless 802.11 network to test the 
capability of ranging and positioning.      

A. Range Measurement Error

An UWB TOF range measurement will include error 
from several sources.  Neither signal multi-path, nor 
receiver processing time can be predicted precisely.  We 
model this error as a uniformly distributed constant and 
assign to our simulated range measurements a random 
measurement-bias within ranges of  ± 5ft., ± 10ft., etc.  

The measurement-bias models the process error in a 
real system, and we assume, a filter used eliminate the 
measurement-bias would also eliminate process error.  
We continuously collect range measurements and filter 
them using a weighted least squares filter.  It takes a set 

of measurements within a fixed-length time window in a 
linear model, and weights them according to their inverse 
variances.  As each new measurement arrives, we 
calculate the new variance and find R*, our bias-free 
range estimate, from the most recent set of measurements 
within our time window.

In the 802.11 hardware environment, the ranging 
transaction PING is sub-optimal for several reasons.  
First, PING is a high-level protocol and a low-priority in 
the CPU stack; the µsecs spent doing “other things” 
reduces the accuracy of the time of flight measurement.  
Second, it requires full cooperation from the receiver, 
nullifying an obvious application to locate an “out of 
compliance” network node.  If a node were maliciously 
out of compliance, we assume it will not respond to a 
PING request.  We must then assume that a non-
compliant node is acting unintentionally, and propose a 
future solution to both problems by replacing PING with 
a communication protocol on the physical-layer to solve 
CPU stack delays and potentially allowing 
communication in a non-cooperative environment.  

Fig. 2. The histogram filtering takes the noisy data in (a)(i) and 
removes the outliers, keeping only the first subset of data in (b).  The 
results are in (a)(ii).    

Every PING issued by a transmitter results in a batch 
of replies noting the elapsed time.  As each batch arrives 
we send it through two stages of filtering to extract the 
real PING time.  In the first filter stage, we distribute the 
data in a histogram of 100 µsec width bins.  The data in 
Fig. 2(a)(i) is shown in a Histogram in Fig. 2(b), where 
the primary subset, or “first hump” is extracted and re-
plotted in Fig. 2(a)(ii).  This stage removes the 
disproportionately large spikes in the data of Fig. 2(a)(i), 
leaving the data within a range of approximately 100-
300µs, as opposed to the original 5ms range. 

The second filter stage is a recursive weighted least-
squares estimator, chosen for it’s ability to predict a the 
true value of a variable given sequential batches of 
“noisy” variable measurements over time.  The filter 
works recursively by updating the least-squares solution 
after every new batch of data arrives.  For the PING 
issued at the kth sampling interval, we receive a batch of 

m new measurements kz , and we estimate the PING 
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time at the next interval zk+1 , and call it 1ˆ +kz .  To 

achieve this, we assume kz  takes the form 

kkk nHxz +=      where    

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The matrix H defines the system type, we assume a first-
order system of constant velocity, and the vector nk is the 
residual measurement error.  If we knew the value of xk , 

we could solve for 1ˆ +kz , the PING estimate at the next 

measurement.  The WLS solution to (1) is 
)ˆ(ˆˆ 11 −− −+= kkkkk xHzKxx (4)

which is the estimate of xk that minimizes a quadratic 
cost function of residual error.  A thorough derivation of 
(4) is found in [8].    The solution consists of the 
previous estimate plus the residual error scaled by a gain 
matrix.  The gain matrix is  

1
11 )( −−− += k

T
k

T
kk RHHPHPK (5)

where Pk is the error covariance matrix representing 
the error after the kth estimate.  

111
1 )( −−−
− += HRHPP k

T
kk        (6)

Finally, we presume some of our measurements are 
better than others, and we define a “weighting matrix” Rk

proportional to each new measurement’s variation from 
the previous estimate, or

1ˆ −−⊗= kkk zIzIN     and    ( ) 11 −− = k
T
kk NNR      (7)

where the operator ⊗ is the element-by-element product 
of the measurement vector zk with the identity matrix, 
resulting in a diagonal matrix of measurement values.  
The weights “reward” the samples that are more closely 
equal to the previous estimate in a feedback sense.  This 
processing results in a single scalar new estimate of 
round-trip flight time, R*.    

B. Generating Position Estimates

The MATLAB software maintains a 
communications infrastructure to allow the transmitters 
to share their most current WLS-filtered range estimates, 
R*, associated with each receiver.  Recall the range 
estimate is simply the round-trip TOF filtered using the 
methods detailed in Sect. IIa and multiplied by the 
velocity of the signal (the speed of light).  With enough 
R*’s, a position estimate is calculated using the closed-
form method detailed in [7].  A graphical representation 
of the method is shown in Figure 3, where the R*

measurements from two transmitters are combined in the 
Pythagorean Theorem (PT) to find receiver position.  We 
combine the known transmitter positions and the 

estimated receiver distances in multiple PT equations 
solved simultaneously to minimize equation error in a 
least-squares fashion.  A minimum of three transmitters, 
and the corresponding three R* measurements, is 
required for a unique receiver position.  Two are shown 
in the figure, but a mirror triangle could be calculated 
placing a receiver alternate outside of the concentric 
circles, thus three transmitters eliminate ambiguity.  It is 
important to note that a solution to the position
estimation problem is possible even in the case of large 
range measurement error since the algorithm in [7] acts 
to find the least squares solution, or the one that results 
in the overall minimization of equation error.  

All transmitters maintain the range measurement 
information between themselves and all receivers in the 
network.  They share only the filtered range 
measurements with the other transmitters.  Once a 
transmitter has range measurements between a receiver 
and three separate transmitters, it can independently 
calculate the receiver’s position estimate using the 
technique in Fig. 3.  

Figure 3. In this graphical representation of the closed-form least 
squares position estimation method developed in [7], the range 
measurements from multiple transmitters are combined using the 
Pythagorean Theorem for an estimate of position.

III. RESULTS

During a high-precision simulation, the position 
estimate of a receiver typically converges to and remains 
at a settled value after 1000 timesteps (one minute of 
sampling at 10ms).  To insure convergence, we run all 
simulations for approximately 3000 timesteps.  We 
generate hundreds of random networks for each 
experiment, and we take the final, converged value as the 
position error associated with the network.

A. Ranging Accuracy and Additional Transmitters

To measure the effect of additional transmitters on 
position error, we use 100 random networks of the 
minimum size, three transmitters and one receiver, and 
we simulate each with a small uniformly distributed 
range measurement error (±20ft.).  We then calculate the 
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average and standard deviation of the converged values 
across all of the 100 networks and repeat the test while 
varying the number of transmitters from three through 
nine.  The results are compiled in the errorbar plot of 
Fig. 4 with mean position error and standard deviation as 
a function of number of transmitters.  By increasing the 
number of transmitters to four, mean position error 
decreases by nearly 20ft., and measurement confidence 
increases (with a standard deviation decrease) by nearly 
60ft.  Increasing the number of transmitters to five, 
however, shows little additional improvement.  Four 
transmitters independently ranging a receiver with ±20ft. 
accuracy can locate its position within less than 5ft.  

Figure 4. The mean and mean + STD were collected for networks 
ranging from three to nine transmitters and one receiver.  All networks 
assumed a ±20 ft. range measurement error.  Four transmitters 
dramatically reduce both mean and standard deviation.  

 In Fig. 4 the range measurement error is centered 
between ±20 ft., and four transmitters provide optimal 
position accuracy.  In Fig. 5 we present data collected by 
varying range measurement error along with number of 
transmitters to find an overall correlation between the 
three.  Confidence in four transmitters, rather than three, 
is valid only when range measurement error is kept 
below ±60ft.  Above this, additional transmitters are 
necessary.

Figure 5. We are interested in the effect additional transmitters, but 
also the effect of an increased range measurement error.  These 
errorbar plots of mean and standard deviation show the impact on 
position error by varying both of these factors with four transmitters, 

and one receiver, five transmitters and one receiver, and six 
transmitters and one receiver.

B. Pseudo-Transmitters

Once a receiver has been “located,” we are interested 
in using it to improve the position estimate of another 
receiver and thus consider it a pseudo-transmitter.  In 
this case, there is no difference between a transmitter and 
receiver (save the three dedicated transmitters needed for 
location and orientation reference).  We test this idea 
using N real transmitters and M pseudo-transmitters, and 
we find that pseudo-transmitters do not improve the 
position estimate of a receiver as do real transmitters; 
instead, they introduce an undamped oscillation that 
worsens with additional pseudo-transmitters.  We test 
this by varying N = [3,…,6] and M = [1,…,6] and find all 
cases similar to that shown in Fig. 6 where N = 5 and M 
= [1, …, 4].  As the number of pseudo-transmitters 
increases, so does position error.  The pseudo-transmitter 
does add knowledge to the system, however with the 
slightest amount of error (here ±10ft.) the system 
becomes unstable. 

Figure 6: We use five transmitters and vary the number of pseudo-
transmitters to show that pseudo-transmitters add instability to the 
system in the presence of external error, here it is a 10 foot range 
measurement error.  

C. Implementation results

A representative example of the results from our 
802.11 implementation is shown in Fig. 7.  All data was 
collected in an office building where walls and metal 
filing cabinets create plenty of signal reverberation.  
802.11b in this environment gave too little variation in 
our µs measurement resolution to be useful.  802.11a 
however provided large error, but with enough variation 
between range measurements to be usefully incorporated 
into a position estimate.  Range measurement error using 
802.11a varied up to 60% of the total distance, yet a 
position estimate could still be provided which was 
within 20 feet of the real position.  An example of this is 
shown in Fig. 6.  The ability to predict position with such 
a high range measurement error is due to signal filtering 
in combination with the powerful position estimation 
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algorithm developed in [7], and tested extensively in [5].  
The algorithm can handle large measurement errors as 
long as additional measurements are introduced.   

Figure 7. The results from the implementation show that a meaningful 
position estimate can still be calculated with 50% range measurement 
error.

IV. CONCLUSION

Our research has been successful in not only 
uncovering answers to our initial questions, but also 
laying the foundation necessary to implement our 
algorithms using recently available UWB radio 
hardware.  Our MATLAB software package runs 
smoothly and is easy to use.  We have tested thousands 
of random networks without algorithm error, and data 
collected from these tests has led to interesting insights.  
Four transmitting nodes in a network, rather than three, 
considerably improve the position estimate of a receiver.  
When operating with a ± 10ft range measurement error 
they average a position estimate accurate to within 3ft.  
Above four, however, there is little improvement.  Using 
receivers as pseudo-transmitters does not improve the 
position estimate for other receivers, as originally 
predicted. We have also quantified these dependencies. 
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